A Survey on Network Embedding

نویسندگان

  • Peng Cui
  • Xiao Wang
  • Jian Pei
  • Wenwu Zhu
چکیده

Network embedding assigns nodes in a network to lowdimensional representations and effectively preserves the network structure. Recently, a significant amount of progresses have been made toward this emerging network analysis paradigm. In this survey, we focus on categorizing and then reviewing the current development on network embedding methods, and point out its future research directions. We first summarize the motivation of network embedding. We discuss the classical graph embedding algorithms and their relationship with network embedding. Afterwards and primarily, we provide a comprehensive overview of a large number of network embedding methods in a systematic manner, covering the structureand property-preserving network embedding methods, the network embedding methods with side information and the advanced information preserving network embedding methods. Moreover, several evaluation approaches for network embedding and some useful online resources, including the network data sets and softwares, are reviewed, too. Finally, we discuss the framework of exploiting these network embedding methods to build an effective system and point out some potential future directions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

New High Secure Network Steganography Method Based on Packet Length

In network steganography methods based on packet length, the length of the packets is used as a carrier for exchanging secret messages. Existing methods in this area are vulnerable against detections due to abnormal network traffic behaviors. The main goal of this paper is to propose a method which has great resistance to network traffic detections. In the first proposed method, the sender embe...

متن کامل

Steganalysis of embedding in difference of image pixel pairs by neural network

In this paper a steganalysis method is proposed for pixel value differencing method. This steganographic method, which has been immune against conventional attacks, performs the embedding in the difference of the values of pixel pairs. Therefore, the histogram of the differences of an embedded image is di_erent as compared with a cover image. A number of characteristics are identified in the di...

متن کامل

Survey on Survivable Virtual Network Embedding Problem and Solutions

Survivability in networks has always been an important issue and lately becomes for network virtualization. Network virtualization provides to run multiple virtual networks on a shared physical network. Since a failure in the physical network can affect several virtual resources, therefore, the survivability has to be considered in the embedding of the virtual resources. In this paper, we prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.08752  شماره 

صفحات  -

تاریخ انتشار 2017